

[SCPY204]

Computer Programing for Physicists

Class 05: 9 Feb 2017

<u>Content</u>: Program's input/output, introduction to Python programming

Instructor: Puwis Amatyakul

FEB

9

2017

"Celebrating Maka Bucha Day"

[on 11 Feb]

Part I: Review, Q&A

Part II: Introduction to Python

Part III: Again! Exercises

Part IV: File I/O

Part I: Review, Q&A

Part II: Introduction to Python

Part III: Again! Exercises

Part IV: File I/O

About Python

- Python is a high-level programming language created by Guido van Rossum.
- First released in 1991.
- It can be classified as an interpreted language used for general-purpose programming.
- Python emphasizes its code readability by using whitespace indentation to delimit code blocks rather than curly braces or keywords).

Guido van Rossum

Dutch programmer

Compiled VS Interpreted Language

Compiled VS Interpreted Language

Compiled		Interpreted		
PROS	CONS	PROS	CONS	
ready to run	not cross platform	cross-platform	interpreter required	
often faster	inflexible	simpler to test	often slower	
source code is private	extra step	easier to debug	source code is public	

Code blocks

```
#!/usr/bin/python
2
3 print "Hello, World!";
4

"Hello, World!" program
in Python

1 #include <stdio.h>
2
3 int main()
4 {
5 printf("Hello, World! \n");
6 return 0;
7 }
8

"Hello, World!" program
in C
"Hello, World!" program
in C
```

→ Comparison with other languages (1)

Matrix multiplication test: C = AB

Language	Option	n=1500	n=1750	n=2000
Python	intrinsic	0.49	0.80	0.95
Python + Numba (loops)		3.6	6.28	13.4
Matlab	intrinsic	0.77	1.02	0.99
Fortran	gfortran (matmul)	1.58	2.52	4.34
	gfortran -O3 (matmul)	1.28	2.05	3.68
	ifort (loop)	1.55	2.01	4.48
	ifort -O3 (loop)	0.51	0.81	1.24
	ifort -O3 (matmul)	0.52	0.82	1.25
	ifort (DGEMM)	0.19	0.23	0.33
С	gcc (loop)	13.33	21.18	31.77
	gcc -Ofast (loop)	1.34	2.35	4.30
	icc (loop)	1.25	2.19	3.99
	icc -Ofast (loop)	1.23	1.72	2.62

Source: https://modelingguru.nasa.gov/docs/DOC-2625

→ Comparison with other languages (2)

Solving 2-D Laplace's equation : $u_{xx} + u_{yy} = 0$

Language	Option	n=100	n=150	n=200
Python		144.54	715.96	2196.97
Python + Numba		1.23	5.37	16.34
Matlab		5.06	12.50	23.40
	gfortran	1.21	5.56	15.64
	gfortran -O3	0.668	3.072	8.897
	ifort	0.38	2.15	6.10
	ifort -O3	0.536	2.46	7.15
	gcc	0.51	2.47	7.85
	gcc -Ofast	0.21	1.04	3.18
	icc	0.45	2.23	6.78
	icc -Ofast	0.32	1.60	4.87

Source: https://modelingguru.nasa.gov/docs/DOC-2625

- → Syntax
- → Data type
- **→** Operation
- → Control flows
- → Function
- → Sequence (array)

→ Syntax

Identifier (naming)

• An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or more letters, underscores and digits (0 to 9).

Statement

 Semicolon (;) is not needed to end a statement. It can be used to omit display output and also for multiple statements on a single line.

```
x = 2.5; y = 4.5; z = 45 d = x/y
```

→ Syntax

Lines and Indentation

- Blocks of code are denoted by line indentation
- The number of spaces in the indentation is variable, but all statements within the block must be indented the same amount.

```
if True:
    print "Answer"
    print "True"

else:
    print "Answer"

print "False" XXXXXXXX

Block 1

Block 2

Block 3

Block 2, continuation
```

This is very important!

→ Syntax

Multi-Line Statements Python allow multiline coding for both assignment and operation statement.

```
For example,
total = item_one + \
       item_two + \
        item_three
and,
days = ['Monday', 'Tuesday', 'Wednesday',
        'Thursday', 'Friday']
```

→ Syntax

Comment

'#' will be used for commenting. All characters after the # and up to the end of the physical line are part of the comment.

```
x = 2.5 \# comments
y = 4.5
```

Input and Output

Waiting for user input (keyboard)

```
input_str = raw_input("Enter input string:")
```

Display output

```
print( "Input = ",input_str,"\n") # Python 3
```

See: http://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html

Part I: Review, Q&A

Part II: Introduction to Python

Part III: Again! Exercises

Part IV: File I/O

Python: Exercise

→ Ex 1:

Giving a series $\mathbf{s} = \{-1,4,-9,16,-25, \dots \}$.

- 1) Can you find a formula of this series?
- 2) Write a Python program to sum the first 20 terms.
- 3) Write a program to find how many percent of the first 100 term that |s| < 1000.

Part I: Review, Q&A

Part II: Introduction to Python

Part III: Again! Exercises

Part IV: File I/O

* I/O == input and output

Part I: Review, Q&A

Part II: Introduction to Python

Part III: Again! Exercises

Part IV: File I/O

Something Interesting

Interesting Stuffs

NASA modeling Guru

> https://modelingguru.nasa.gov

Interesting Stuffs

NASA modeling Guru

> https://modelingguru.nasa.gov