
Computer Programing
for Physicists

[SCPY204]

Class 05: 15 Feb 2018

Content: Program's input/output, introduction to Python
programming

Instructor: Puwis Amatyakul

“Valentine’s after
party”

201815
FEB

Today’s Goals

Part I: Review, Q&A
Part II: Introduction to Python
Part III: Again! Exercises
Part IV: File I/O

C-Array: pitfalls

Today’s Goals

Part I.I: File I/O in C
Part II: Introduction to Python
Part III: Again! Exercises
Part IV: File I/O

C: File I/O

Step 1: Opening file(s)

FILE *fopen(const char * filename, const char * mode);

Step 3: Closing file(s)

fclose(FILE *fp);

Step 2: Write / Read

fscanf(fp,"%s",buff);

fprintf(fp,"This is testing for fprintf...\n");
fputs("This is testing for fputs...\n",fp);

fgets(buff,255,(FILE*)fp);

C: File I/O

Writing

C: File I/O

Reading

C: File I/O

Sr.No. Mode & Description
1 r

Opens an existing text file for reading purpose.
2 w

Opens a text file for writing. If it does not exist, then a new file is
created. Here your program will start writing content from the
beginning of the file.

3 a
Opens a text file for writing in appending mode. If it does not exist,
then a new file is created. Here your program will start appending
content in the existing file content.

4 r+
Opens a text file for both reading and writing.

5 w+
Opens a text file for both reading and writing. It first truncates the file
to zero length if it exists, otherwise creates a file if it does not exist.

6 a+
Opens a text file for both reading and writing. It creates the file if it
does not exist. The reading will start from the beginning but writing
can only be appended.

C: File I/O

Ex 1: Can you write 100 random number into a file?

Hint:

Today’s Goals

Part I: Review, Q&A
Part II: Introduction to Python
Part III: Again! Exercises
Part IV: File I/O

About Python
• Python is a high-level programming language

created by Guido van Rossum.

• First released in 1991.

• It can be classified as an interpreted language
used for general-purpose programming.

• Python emphasizes its code readability by using
whitespace indentation to delimit code blocks
rather than curly braces or keywords).

Guido van Rossum
Dutch programmer

Python: Introduction

Python: Introduction

Compiled VS Interpreted Language

Python: Introduction

Compiled VS Interpreted Language

Python: Introduction

Code blocks

Python: Introduction
� Comparison with other languages (1)

Language Option n=1500 n=1750 n=2000
Python intrinsic 0.49 0.80 0.95

Python + Numba
(loops) 3.6 6.28 13.4

Matlab intrinsic 0.77 1.02 0.99
Fortran

gfortran (matmul) 1.58 2.52 4.34

gfortran -O3 (matmul) 1.28 2.05 3.68

ifort (loop) 1.55 2.01 4.48

ifort -O3 (loop) 0.51 0.81 1.24

ifort -O3 (matmul) 0.52 0.82 1.25

ifort (DGEMM) 0.19 0.23 0.33

C gcc (loop) 13.33 21.18 31.77

gcc -Ofast (loop) 1.34 2.35 4.30

icc (loop) 1.25 2.19 3.99

icc -Ofast (loop) 1.23 1.72 2.62

Matrix multiplication test: ! = #$

Source: https://modelingguru.nasa.gov/docs/DOC-2625

Python: Introduction
� Comparison with other languages (2)

Solving 2-D Laplace’s equation : !"" + !$$ = &

Source: https://modelingguru.nasa.gov/docs/DOC-2625

Language Option n=100 n=150 n=200

Python 144.54 715.96 2196.97

Python + Numba 1.23 5.37 16.34

Matlab 5.06 12.50 23.40

Fortran gfortran 1.21 5.56 15.64

gfortran -O3 0.668 3.072 8.897

ifort 0.38 2.15 6.10

ifort -O3 0.536 2.46 7.15

C gcc 0.51 2.47 7.85

gcc -Ofast 0.21 1.04 3.18

icc 0.45 2.23 6.78

icc -Ofast 0.32 1.60 4.87

Python: Basic

� Syntax
� Data type
� Operation
� Control flows
� Function
� Sequence (array)

Python: Basic

� Syntax
Identifier (naming)
• An identifier starts with a letter A to Z or a to z or an underscore (_)

followed by zero or more letters, underscores and digits (0 to 9).

Statement
• Semicolon (;) is not needed to end a statement. It can be used to omit

display output and also for multiple statements on a single line.

x = 2.5; y = 4.5; z = 45
d = x/y

Python: Basic

� Syntax
Lines and Indentation
• Blocks of code are denoted by line indentation
• The number of spaces in the indentation is variable, but all statements

within the block must be indented the same amount.
if True:

print "Answer"
print "True"

else:
print "Answer"

print "False" XXXXXXXX

This is very important!

Python: Basic

� Syntax
Multi-Line Statements
Python allow multiline coding for both assignment and operation statement.

For example,

total = item_one + \
 item_two + \

item_three

and,

days = ['Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday']

Python: Basic

� Syntax
Comment
‘#’ will be used for commenting. All characters after the # and up to the end of the
physical line are part of the comment.

x = 2.5 # comments
y = 4.5

Input and Output

Waiting for user input (keyboard)

input_str = raw_input("Enter input string:")

Display output

print("Input = ",input_str,"\n") # Python 3

See: http://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html

Today’s Goals

Part I: Review, Q&A
Part II: Introduction to Python
Part III: Again! Exercises
Part IV: File I/O

Python: Exercise

� Ex 1:

Giving a series s = {-1,4,-9,16,-25, … }.

1) Can you find a formula of this series?

2) Write a Python program to sum the first 20 terms.

3) Write a program to find how many percent of the first 100 term that |s| < 1000.

Today’s Goals

Part I: Review, Q&A
Part II: Introduction to Python
Part III: Again! Exercises
Part IV: File I/O

* I/O == input and output

File I/O: Python

How to simply WRITE and READ

First, create file object
file_object = open(“filename”, “mode”)

File Mode
§ ‘r’ – Read mode which is used when the file is only being read
§ ‘w’ – Write mode which is used to edit and write new information to the file (any

existing files with the same name will be erased when this mode is activated)
§ ‘a’ – Appending mode, which is used to add new data to the end of the file; that is

new information is automatically amended to the end
§ ‘r+’ – Special read and write mode, which is used to handle both actions when

working with a file

Try 1
file = open(“testfile.txt”,”w”)
file.write(“Hello World”)
file.write(“Second line.”)
file.write(“and the third line.”)
file.close()

File I/O: Python

How to simply WRITE and READ

Try 2

file = open(“testfile.txt”,”r”)

Try these commands
print(file.read())
print(file.read(5))
print(file.readline():)
print(file.readline(1):)

file.close()

File I/O: Python

How to simply WRITE and READ

Try 4

with open(“testfile.txt”) as f:
for line in f:

print(line)

Try 3

file = open(“testfile.txt”, “r”)
for line in file:

print(line)

File I/O: Python

How to simply WRITE and READ

Try 5: Splitting

with open(“hello.text”, “r”) as f:
data = f.readlines()

for line in data:
words = line.split()
print(words)

File I/O: Python

Try reading this tutorial:

1. http://www.python-course.eu/python3_file_management.php

2. http://www.python-course.eu/python3_formatted_output.php

Exercise 1: Try creating a simple file containing numbers in each line.

Read those number into a list.

Exercise 2: Create a text file containing numbers in array format. Try

reading it into a list.

Exercise 3: Score of 100 students is prepared in the course website. Try

reading it into a list and do the following tasks.

a) Find max, min, mean, median, mode and SD.

b) Make a histogram inside a terminal and into a file.

c) Write a file with grade after score in each line.

File I/O: Python

How to read numbers from file?

For a simple 1-D list, try using append.

For a 2-D array formatted file.

Way I:
file = open ('input.txt' , 'r')
arr = [map(int,line.split(',')) for line in file]
print(arr)
Way II:
arr = []
with open('input.txt', 'r') as file:
for line in file:
line = line.strip()

 if len(line) > 0:
arr.append(map(int, line.split(',')))

print(arr)
Way III:
from numpy import loadtxt
lines = loadtxt("input.txt", delimiter=",", dtype=“i”)

File I/O: Python

How to write formatted string to file?
Try these tricks:

Assume you had strings variable: filename, type, size and modified

f.write('%-40s %6s %10s %2s\n' % (filename, type, size, modified))

or

f.write(
 "{0} {1} {2} {3}".format(

filename.ljust(40),
type.rjust(6),
size.rjust(10),
modified.rjust(2)

)
)

File I/O: Python

Exercise 3: Output example

Graph: histogram of student scores
==================================

^
20 |
16 |

F 12 | #
8 | # #
4 | # # # # #
0 | # # # # # # #
------------------------->

30 40 50 60 70 80 90
Score

Average = xxxx
Mean = xxxx, SD = xxxx
Mode = xxxx, Median = xxxx

Python: Modules

Try reading the manual from http://matplotlib.org/

Exercise 1: Making a sine curve from 0 to 4!.

Exercise 2: Plot a histogram of a previous exercise.

Today’s Goals

Part I: Review, Q&A
Part II: Introduction to Python
Part III: Again! Exercises
Part IV: File I/O

Something Interesting

Interesting Stuffs

NASA modeling Guru
> https://modelingguru.nasa.gov

File I/O: Python

Try reading this tutorial:
1. http://www.python-course.eu/python3_file_management.php
2. http://www.python-course.eu/python3_formatted_output.php

Exercise 1: Try creating a simple file containing numbers in each line.
Read those number into a list.

Exercise 2: Score of 100 students is prepared in the course website. Try
reading it into a list and do the following tasks.
a) Find max, min, mean, median, mode and SD.
b) Make a histogram inside a terminal!
c) Write a file with grade after score in each line.

