
Computer Programing
for Physicists

[SCPY204]

Lecture 12: 20 April 2017

Content: Data structures, introduction to Graph
Theory

Instructor: Puwis Amatyakul

“Happy (Thai)
New Year”

201720
APR

2

Today’s Goals

Part I: (More) Data structure in Python
Part II: Graph Theory
Part II: Exercises

3

Data Structures: stack and queue

• List
• Array
• Stack
• Queue

Derived Data Types

4

The abstract data structures stack and queue.
Source: http://cs.joensuu.fi/~appro/ics/05-03.php

• Stack and queue are more restricted data structures than list.
• Element are arranged sequentially like in a list,
• but element additions and removals are possible to execute only to the

ends of the collection.

Data Structures: stack and queue

• List
• Array
• Stack
• Queue

Derived Data Types

5

The abstract data structures stack and queue.
Source: http://cs.joensuu.fi/~appro/ics/05-03.php

ü In stack one of the collection ends (top) is used to element addition and
removal,

ü and thus the element added last is removed first.
ü This is why stack is called as a LIFO structure (Last In, First Out).

Data Structures: stack and queue

• List
• Array
• Stack
• Queue

Derived Data Types

6

The abstract data structures stack and queue.
Source: http://cs.joensuu.fi/~appro/ics/05-03.php

ü In queue elements are added to one of the collection's ends (tail) and
removed from the other end (head),

ü and thus the element added first is also removed first.
ü Hence, queue is called a FIFO structure (First In, First Out).

Data Structures: stack and queue

• List
• Array
• Stack
• Queue

Derived Data Types

7

The abstract data structures stack and queue.
Source: http://cs.joensuu.fi/~appro/ics/05-03.php

ü In queue elements are added to one of the collection's ends (tail) and
removed from the other end (head),

ü and thus the element added first is also removed first.
ü Hence, queue is called a FIFO structure (First In, First Out).

Data Structures: stack and queue in Python

8Source: https://docs.python.org/2/tutorial/datastructures.html

The list data type has some more methods. Here are all of the methods of list
objects:

list.append(x)
Add an item to the end of the list; equivalent to a[len(a):] = [x].

list.extend(L)
Extend the list by appending all the items in the given list; equivalent to a[len(a):] = L.

list.insert(i, x)
Insert an item at a given position. The first argument is the index of the element before
which to insert, so a.insert(0, x) inserts at the front of the list, and
a.insert(len(a), x) is equivalent to a.append(x).

list.remove(x)
Remove the first item from the list whose value is x. It is an error if there is no such item.

Python’s List

Data Structures: stack and queue in Python

9Source: https://docs.python.org/2/tutorial/datastructures.html

list.pop([i])
Remove the item at the given position in the list, and return it. If no index is specified,
a.pop()removes and returns the last item in the list.

list.index(x)
Return the index in the list of the first item whose value is x. It is an error if there is no
such item.

list.count(x)
Return the number of times x appears in the list.

list.sort(cmp=None, key=None, reverse=False)
Sort the items of the list in place (the arguments can be used for sort customization.

list.reverse()
Reverse the elements of the list, in place.

Python’s List

Data Structures: stack and queue in Python

10Source: https://docs.python.org/2/tutorial/datastructures.html

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]

Python’s List: Using Lists as Stacks

Data Structures: stack and queue in Python

11Source: https://docs.python.org/2/tutorial/datastructures.html

>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.popleft() # The first to arrive now leaves
'Eric'
>>> queue.popleft() # The second to arrive now leaves
'John'
>>> queue # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])

Python’s List: Using Lists as Stacks

Today’s Goals

Part I: (More) Data structure in Python
Part II: Graph Theory
Part II: Exercises

12

13

The Bridges of Koenigsberg: Euler 1736

• “Graph Theory” began in 1736
• Leonard Eüler

• Visited Koenigsberg
• People wondered whether it is possible to take a

walk, end up where you started from, and cross
each bridge in Koenigsberg exactly once

• Generally it was believed to be impossible

Source: MIT_082JF10_lec01

14

A

D

C
B

1 2

4

3

7

65

Is it possible to start in A, cross over each bridge exactly once, and
end up back in A?

The Bridges of Koenigsberg: Euler 1736

Source: MIT_082JF10_lec01

15

A

D

C
B

1 2

4

3

7

65

Conceptualization: Land masses are “nodes”.

The Bridges of Koenigsberg: Euler 1736

Source: MIT_082JF10_lec01

16

1 2

4

3

7

65

Conceptualization: Bridges are “arcs.”

A

C

D

B

The Bridges of Koenigsberg: Euler 1736

Source: MIT_082JF10_lec01

17

1 2

4

3

7

65

Is there a “walk” starting at A and ending at A and
passing through each arc exactly once?

A

C

D

B

The Bridges of Koenigsberg: Euler 1736

Source: MIT_082JF10_lec01

Graph Theory: Basic terminology

18

Graph = finite set of vertices, V, along with a set of edges, E.
E is a 2-element subset of V.

Basic terminology and ideas

Graph Theory:

19

Graph = finite set of vertices, V, along with a set of edges, E.
E is a 2-element subset of V.

Basic terminology and ideas

G

𝑣" 𝑣#

𝑣$

𝑣% 𝑣&

𝑣'
𝑉 = 𝑣", 𝑣#, … , 𝑣&

𝐸 = {𝑣", 𝑣#}	, 𝑣", 𝑣' … , 𝑣%, 𝑣&

Vertices and Edges

Graph Theory:

20

Graph = finite set of vertices, V, along with a set of edges, E.
E is a 2-element subset of V.

Basic terminology and ideas

G

𝑣" 𝑣#

𝑣$

𝑣% 𝑣&

𝑣'
𝑉 = 𝑣", 𝑣#, … , 𝑣&
𝐸 = {𝑣", 𝑣#}	, 𝑣", 𝑣' … , 𝑣%, 𝑣&

Vertices and Edges

Cardinality of G
𝐺 = 6

Degree of 𝒗
𝑑𝑒𝑔 𝑣" = 3

Graph Theory:

21

Graph = finite set of vertices, V, along with a set of edges, E.
E is a 2-element subset of V.

Basic terminology and ideas

G

𝑣" 𝑣#

𝑣$

𝑣% 𝑣&

𝑣'

𝒗𝟏: 𝑣#, 𝑣', 𝑣$
𝒗𝟐: 𝑣"
…

Adjacency List

Graph Theory:

22

Graph = finite set of vertices, V, along with a set of edges, E.
E is a 2-element subset of V.

Basic terminology and ideas

G

𝑣" 𝑣#

𝑣$

𝑣% 𝑣&

𝑣'

Adjacency Matrix

v1 v2 v3 v4 v5 v6
v1 0 1 1 1 0 0
v2 1 0 0 0 0 0
v3 1 0 0 0 0 0
v4 1 0 0 0 1 0
v5 0 0 0 1 1 0
v6 0 0 0 0 1 0

Graph Theory:

23

Graph = finite set of vertices, V, along with a set of edges, E.
E is a 2-element subset of V.

Basic terminology and ideas

G

𝑣" 𝑣#

𝑣$

𝑣% 𝑣&

𝑣'

Traversal

Graph Theory:

24

Basic terminology and ideas

2

34

1
a

b

c

d

e

An Undirected Graph or
Undirected Network

2

34

1
a

b

c

d

e

A Directed Graph or
Directed Network

More Jargons
Edges: Loops, Multiple edges, Directed edges
Traversal: Walk, Trail, Path

Today’s Goals

Part I: (More) Data structure in Python
Part II: Graph Theory
Part II: Exercises

25

Graph Theory: exercise

26

Problem: Bangkok train network
1. Can you draw a graph representative of currently available Bangkok's train network?

The graph shoud include only terminal station and the interconection station
(Only sky and subway, no regional train)

2. How many vertices (station) that have a degree > 2?
3. Path to Phloen Chit station from Lad Phrao station

1. List three possible paths.
2. Use any approximation on distance (or time) between relevant stations.
3. Find the shortest distance (or time) path.
4. Find the shortest distance (or time) path.
5. [Challenge] Estimate the cost between stations based on the actual rate.
6. [Challenge] Find the path with the minimum cost.
7. [Challenge] Find the optimum path between cost vs distance (time).

Instruction
• Try to do it on the given paper first, then let do these exercises in Python.
• You may try inventing your own algorithm first.
• After that, compare you algorithm with Dijkstra’s Algorithm.

(https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm)

27

