

[SCPY384] Geophysical Prospecting

Class 2: 28 JAN 2019

<u>Content</u>: Direct-current resistivity survey / Instrument, data and examples

Instructor: Puwis Amatyakul

Today's Goals

Part I: Reviews**Part II**: DCR principle**Part III**: DCR Instruments

1. Resistance VS Resistivity

2. Archie's Law

$$\frac{\rho_o}{\rho_w} = F = \phi^{-m}$$

3. Direct-current resistivity survey

A – Fluid in cracks parallel to electric current flow

The sample has 10% porosity. This fluid geometry represents a **parallel circuit**, and electric current can effectively bypass the resistive rock grains and travel through the sample entirely in the conductive liquid.

What is the overall resistivity of the cube?

Today's Goals

Part I: Reviews**Part II**: DCR principle**Part III**: DCR Instruments

1.1 Potential of a single current electrode

Consider an electric current, I, flowing from an electrode. The air has a very high electrical resistivity, so all current flows in the Earth. From symmetry arguments, the current spreads out uniformly in all directions. Now consider a shell of rock, with radius, r, and thickness dr. The voltage (potential) drop across the shell is ΔV

The resistance of the hemispherical shell,
$$\mathbf{R} = \frac{\rho L}{A} = \frac{\rho dr}{2\pi r^2} = \frac{\Delta V}{I}$$

Rearranging and taking limits gives $dV = \frac{I\rho}{2\pi r^2} dr$

Source: https://sites.ualberta.ca/~unsworth/UA-classes/325/C/325C2-2005.pdf

1.1 Potential of a single current electrode

To compute the potential, V, apply the boundary condition that V=0 when $r=\infty$ and integrate to give:

$$V = \frac{I\rho}{2\pi} \int \frac{1}{r^2} dr = \frac{I\rho}{2\pi} \left[-\frac{1}{r} \right]_r^\infty = -\frac{I\rho}{2\pi r}$$

1.1 Potential of a single current electrode

Can this geometry be used to measure the resistivity of the Earth?

The voltage between the electrodes A and B is defined as $\Delta V_{AB} = V_A - V_B$

Using the above result
$$\Delta V_{AB} = \frac{I\rho}{2\pi} \left[\frac{1}{r_A} - \frac{1}{r_B} \right]$$

1.1 Potential of a single current electrode

Can this geometry be used to measure the resistivity of the Earth?

where r_A and r_B are the distances from the current electrode to the potential electrodes A and B respectively. Rearranging this equation gives

 $\rho = \frac{2\pi\Delta V_{AB}}{I(\frac{1}{r_A} - \frac{1}{r_B})}$

Note that this is essentially Ohms Law with a geometric factor added.

Why is this not a practical way to measure the resistivity of the Earth?

1.1 Potential of a single current electrode

Can this geometry be used to measure the resistivity of the Earth?

Why is this not a practical way to measure the resistivity of the Earth?

1.2 Potential of two current electrodes

A more realistic situation uses to current electrodes. Current is injected through one electrode and withdrawn through the other.

1.2 Potential of two current electrodes

To compute the potential at electrode P1, we can simply add the potentials generated by the two current electrodes C1 and C2.

$$V_{P1} = \frac{I\rho}{2\pi r_1} - \frac{I\rho}{2\pi r_2} = \frac{I\rho}{2\pi} (\frac{1}{r_1} - \frac{1}{r_2})$$

1.2 Potential of two current electrodes

1.2 Potential of two current electrodes

However, to measure a voltage, we need **two** potential electrodes to connect to a voltmeter. Consider the arrangement of electrodes shown below.

Can you prove that

$$\Delta V = \frac{I\rho}{2\pi} \left[\frac{1}{r_1} - \frac{1}{r_2} - \frac{1}{r_3} + \frac{1}{r_4} \right]$$
 General case

1.2 Potential of two current electrodes

However, to measure a voltage, we need **two** potential electrodes to connect to a voltmeter. Consider the arrangement of electrodes shown below.

Now let us make the geometry of the array simple, with the 4 electrodes separated by a distance *a*. Then we have $r_1 = r_4 = a$ and have $r_3 = r_3 = 2a$

$$\Delta V = V_{P1} - V_{P2} = \frac{I\rho}{2\pi} \left[\left(\frac{1}{a} - \frac{1}{2a} \right) - \left(\frac{1}{2a} - \frac{1}{a} \right) \right]$$
$$= \frac{I\rho}{2\pi a} \left[\left(1 - \frac{1}{2} \right) - \left(\frac{1}{2} - 1 \right) \right]$$
$$= \frac{I\rho}{2\pi a}$$

1.2 Potential of two current electrodes

This represents a solution to a **forward problem** i.e. for a model of the Earth (resistivity, ρ) we can predict the value of ΔV that will be observed in a geophysical survey. Simple rearrangement gives us a solution to the corresponding **inverse problem**.

 $\rho = \frac{2\pi a \Delta V}{I}$

This equation shows how the resistivity of the Earth can be computed from field measurements of ΔV , I and the electrode spacing (a). Again, this equation is essentially Ohms Law, with a geometric factor to account for the complex current flow pattern.

If the Earth has a uniform structure, with the resistivity equal to ρ at all points, then the measured resistivity value will equal the actual resistivity value of the Earth.

1.2 Potential of two current electrodes

However, if the resistivity is variable, the resistivity computed will be an average value over the region in which the current is flowing. This average resistivity is termed the **apparent resistivity** and defined as

1.2 Potential of two current electrodes

The figure below shows a quantitative evaluation of the electric current flow pattern.

Figure 5-8 Equipotential surfaces and current lines of flow. Labels indicate percent (total current that penetrates to the depth of the line.

Note that:

- Electric current does not flow directly from one current electrode to the other in a straight line. This is because the charge carriers repel one another.
- Electric current flow is at right angles to the equipotential surfaces.
- Approximately 50% of the electric current flows within a depth a of the surface.
- The apparent resistivity can be considered the average resistivity over a volume that is located between the electrodes, and in the depth range from the surface to a depth equal to the *a*-spacing.

1.2 Complex underground resistivity

1.2 Complex underground resistivity

1.2 Complex underground resistivity

1.2 Complex underground resistivity

Apparent Resistivity Curve Two-layered media –case 1

1.2 Complex underground resistivity

Apparent Resistivity Curve Two-layered media –case 2

1.2 Complex underground resistivity

Apparent Resistivity Curve Three-layered media

Electrode Spacing - A (m)

1.2 Complex underground resistivity

Apparent Resistivity Curve Three-layered media

Electrode Spacing - A (m)

Today's Goals

Part I: Reviews**Part II**: DCR principle**Part III**: DCR Instruments

Equipment

- Current source
- Ammeter
- Voltmeter
- Electrodes
- Cables

Battery

Measuring Tapes

Potential Electrodes

Resisitivity Meter SYSCAL Switch (V11.5++), IRIS INSTRUMENTS

- 1-D : Vertical Electric Sounding (VES)
- 2-D : Electrical Profile
- 2-D : Electrical Resistivity Tomography (ERT)
- 3-D : ERT (series of 2-D ERTs)

- 1-D : Vertical Electric Sounding (VES)
 - To look for variations in resistivity with depth

Electrode Spacing - A (m)

การขยายขั้วไฟฟ้าสำหรับ Wenner array Ground Surface (a) n = 1 Î V **P**₂ 2a2a2aGround Surface м N (b) n = 2 I V Ρ, 3a 3a 3aGround Surface Ν Μ Ŕ (c) n = 3 n = 1

n = 2

- 2-D : Electrical Profile
 - To detect lateral variations in resistivity

Pseudo-section

3-D : ERT (series of 2-D ERTs)

Array Type (Configuration)

- Pole-Pole array
- Pole-Dipole array
- Dipole-Dipole array
- Wenner array
- Schlumberger array

Wenner Array

Wenner sounding data is plotted as apparent resistivity vs. a on a log-log plot

Schlumberger Array

Schlumberger sounding data is plotted as apparent resistivity vs. s or AB/2 on a log-log plot

Dipole-Dipole Array

Dipole-Dipole sounding data is plotted as apparent resistivity vs. *n a* on a log-log plot

Pole-Dipole sounding data is plotted as apparent resistivity vs. na

Pole-Pole Array

Array advantages and disadvantages

Array	Advantages	Disadvantages
Wenner	1. Easy to calculate ρ_a in the field	1. All electrodes moved each sounding
	2. Less demand on instrument sensivity	2. Sensitive to local shallow variations
		3. Long cables for large depths
Schlumberger	 Fewer electrodes to move each sounding Needs shorter potential cables 	 Can be confusing in the field Requires more sensitive equipment Long Current cables
Dipole-Dipole	1. Cables can be shorter for deep soundings	 Requires large current Requires sensitive instruments

Field Test: Study Area

Field Test: Field Parameters

- Array: Schlumberger
- Profile length: 188 m
- ➢ Electrode spacing: 4 m
- Iris Instrument Syscal-R1 plus: 48 channels

Inverted Resistivity Models

• 3-D : ERT (series of 2-D ERTs)

DC Resistivity Survey

Homework 1

Derive the apparent resistivity from the general expression:

$$\Delta V = \frac{I\rho}{2\pi} \left[\frac{1}{r_1} - \frac{1}{r_2} - \frac{1}{r_3} + \frac{1}{r_4} \right]$$

for these electrode configurations

1.1 Wenner array, 1.2 Schlumberger array, and 1.3 Dipole-dipole array

DC Resistivity Survey

Homework 2

Design the DCR experiment to find the ground water table of a depth of 20 m of a thickness of 5 m.